Package: mixdir 0.3.0
mixdir: Cluster High Dimensional Categorical Datasets
Scalable Bayesian clustering of categorical datasets. The package implements a hierarchical Dirichlet (Process) mixture of multinomial distributions. It is thus a probabilistic latent class model (LCM) and can be used to reduce the dimensionality of hierarchical data and cluster individuals into latent classes. It can automatically infer an appropriate number of latent classes or find k classes, as defined by the user. The model is based on a paper by Dunson and Xing (2009) <doi:10.1198/jasa.2009.tm08439>, but implements a scalable variational inference algorithm so that it is applicable to large datasets. It is described and tested in the accompanying paper by Ahlmann-Eltze and Yau (2018) <doi:10.1109/DSAA.2018.00068>.
Authors:
mixdir_0.3.0.tar.gz
mixdir_0.3.0.zip(r-4.5)mixdir_0.3.0.zip(r-4.4)mixdir_0.3.0.zip(r-4.3)
mixdir_0.3.0.tgz(r-4.4-x86_64)mixdir_0.3.0.tgz(r-4.4-arm64)mixdir_0.3.0.tgz(r-4.3-x86_64)mixdir_0.3.0.tgz(r-4.3-arm64)
mixdir_0.3.0.tar.gz(r-4.5-noble)mixdir_0.3.0.tar.gz(r-4.4-noble)
mixdir_0.3.0.tgz(r-4.4-emscripten)mixdir_0.3.0.tgz(r-4.3-emscripten)
mixdir.pdf |mixdir.html✨
mixdir/json (API)
NEWS
# Install 'mixdir' in R: |
install.packages('mixdir', repos = c('https://const-ae.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/const-ae/mixdir/issues
- mushroom - Properties of 8124 mushrooms.
categorical-dataclusteringquestionnairesvariational-inference
Last updated 1 years agofrom:f772069f13. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win-x86_64 | OK | Nov 04 2024 |
R-4.5-linux-x86_64 | OK | Nov 04 2024 |
R-4.4-win-x86_64 | OK | Nov 04 2024 |
R-4.4-mac-x86_64 | OK | Nov 04 2024 |
R-4.4-mac-aarch64 | OK | Nov 04 2024 |
R-4.3-win-x86_64 | OK | Nov 04 2024 |
R-4.3-mac-x86_64 | OK | Nov 04 2024 |
R-4.3-mac-aarch64 | OK | Nov 04 2024 |
Exports:find_defining_featuresfind_predictive_featuresfind_typical_featuresmixdirplot_features
Dependencies:extraDistrRcpp
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Find the n defining features | find_defining_features |
Find the top predictive features and values for each latent class | find_predictive_features |
Find the most typical features and values for each latent class | find_typical_features |
Cluster high dimensional categorical datasets | mixdir |
Properties of 8124 mushrooms. | mushroom |
Plot cluster distribution for a subset of features features | plot_features |
Predict the class of a new observation. | predict.mixdir |