
Package: tidygenomics (via r-universe)
September 9, 2024

Type Package

Title Tidy Verbs for Dealing with Genomic Data Frames

Version 0.1.2

Description Handle genomic data within data frames just as you would
with 'GRanges'. This packages provides method to deal with
genomic intervals the ``tidy-way'' which makes it simpler to
integrate in the the general data munging process. The API is
inspired by the popular 'bedtools' and the genome_join() method
from the 'fuzzyjoin' package.

URL https://github.com/const-ae/tidygenomics

License GPL-3

Encoding UTF-8

LazyData true

Imports dplyr, rlang, purrr, tidyr, fuzzyjoin (>= 0.1.3), IRanges,
Rcpp

Suggests testthat, knitr, rmarkdown

RoxygenNote 6.1.1

LinkingTo Rcpp

VignetteBuilder knitr

Repository https://const-ae.r-universe.dev

RemoteUrl https://github.com/const-ae/tidygenomics

RemoteRef HEAD

RemoteSha 23737e99f7ff9893f485e2b6b48c1d15c13a5623

Contents
cluster_interval . 2
genome_cluster . 2
genome_complement . 3
genome_intersect . 4
genome_join_closest . 5
genome_subtract . 6

1

https://github.com/const-ae/tidygenomics

2 genome_cluster

Index 8

cluster_interval Cluster ranges which are implemented as 2 equal-length numeric vec-
tors.

Description

Cluster ranges which are implemented as 2 equal-length numeric vectors.

Usage

cluster_interval(starts, ends, max_distance = 0L)

Arguments

starts A numeric vector that defines the starts of each interval
ends A numeric vector that defines the ends of each interval
max_distance The maximum distance up to which intervals are still considered to be the same

cluster. Default: 0.

Examples

starts <- c(50, 100, 120)
ends <- c(75, 130, 150)
j <- cluster_interval(starts, ends)
j == c(0,1,1)

genome_cluster Intersect data frames based on chromosome, start and end.

Description

Intersect data frames based on chromosome, start and end.

Usage

genome_cluster(x, by = NULL, max_distance = 0,
cluster_column_name = "cluster_id")

Arguments

x A dataframe.
by A character vector with 3 entries which are the chromosome, start and end col-

umn. For example: by=c("chr", "start", "end")

max_distance The maximum distance up to which intervals are still considered to be the same
cluster. Default: 0.

cluster_column_name

A string that is used as the new column name

genome_complement 3

Value

The dataframe with the additional column of the cluster

Examples

library(dplyr)

x1 <- data.frame(id = 1:4, bla=letters[1:4],
chromosome = c("chr1", "chr1", "chr2", "chr1"),
start = c(100, 120, 300, 260),
end = c(150, 250, 350, 450))

genome_cluster(x1, by=c("chromosome", "start", "end"))
genome_cluster(x1, by=c("chromosome", "start", "end"), max_distance=10)

genome_complement Calculates the complement to the intervals covered by the intervals in
a data frame. It can optionally take a chromosome_size data frame
that contains 2 or 3 columns, the first the names of chromosome and
in case there are 2 columns the size or first the start index and lastly
the end index on the chromosome.

Description

Calculates the complement to the intervals covered by the intervals in a data frame. It can optionally
take a chromosome_size data frame that contains 2 or 3 columns, the first the names of chromosome
and in case there are 2 columns the size or first the start index and lastly the end index on the
chromosome.

Usage

genome_complement(x, chromosome_size = NULL, by = NULL)

Arguments

x A data frame for which the complement is calculated

chromosome_size

A dataframe with at least 2 columns that contains first the chromosome name
and then the size of that chromosome. Can be NULL in which case the largest
value per chromosome from x is used.

by A character vector with 3 entries which are the chromosome, start and end col-
umn. For example: by=c("chr", "start", "end")

4 genome_intersect

Examples

library(dplyr)

x1 <- data.frame(id = 1:4, bla=letters[1:4],
chromosome = c("chr1", "chr1", "chr2", "chr1"),
start = c(100, 200, 300, 400),
end = c(150, 250, 350, 450))

genome_complement(x1, by=c("chromosome", "start", "end"))

genome_intersect Intersect data frames based on chromosome, start and end.

Description

Intersect data frames based on chromosome, start and end.

Usage

genome_intersect(x, y, by = NULL, mode = "both")

Arguments

x A dataframe.

y A dataframe.

by A character vector with 3 entries which are used to match the chromosome, start
and end column. For example: by=c("Chromosome"="chr", "Start"="start",
"End"="end")

mode One of "both", "left", "right" or "anti".

Value

The intersected dataframe of x and y with the new boundaries.

Examples

library(dplyr)

x1 <- data.frame(id = 1:4, bla=letters[1:4],
chromosome = c("chr1", "chr1", "chr2", "chr2"),
start = c(100, 200, 300, 400),
end = c(150, 250, 350, 450))

x2 <- data.frame(id = 1:4, BLA=LETTERS[1:4],
chromosome = c("chr1", "chr2", "chr2", "chr1"),
start = c(140, 210, 400, 300),
end = c(160, 240, 415, 320))

j <- genome_intersect(x1, x2, by=c("chromosome", "start", "end"), mode="both")

genome_join_closest 5

print(j)

genome_join_closest Join intervals on chromosomes in data frames, to the closest partner

Description

Join intervals on chromosomes in data frames, to the closest partner

Usage

genome_join_closest(x, y, by = NULL, mode = "inner",
distance_column_name = NULL, max_distance = Inf, select = "all")

genome_inner_join_closest(x, y, by = NULL, ...)

genome_left_join_closest(x, y, by = NULL, ...)

genome_right_join_closest(x, y, by = NULL, ...)

genome_full_join_closest(x, y, by = NULL, ...)

genome_semi_join_closest(x, y, by = NULL, ...)

genome_anti_join_closest(x, y, by = NULL, ...)

Arguments

x A dataframe.

y A dataframe.

by A character vector with 3 entries which are used to match the chromosome, start
and end column. For example: by=c("Chromosome"="chr", "Start"="start",
"End"="end")

mode One of "inner", "full", "left", "right", "semi" or "anti".
distance_column_name

A string that is used as the new column name with the distance. If NULL no new
column is added.

max_distance The maximum distance that is allowed to join 2 entries.

select A string that is passed on to IRanges::distanceToNearest, can either be all
which means that in case that multiple intervals have the same distance all are
reported, or arbitrary which means in that case one would be chosen at random.

... Additional arguments parsed on to genome_join_closest.

6 genome_subtract

Value

The joined dataframe of x and y.

Examples

library(dplyr)

x1 <- data.frame(id = 1:4, bla=letters[1:4],
chromosome = c("chr1", "chr1", "chr2", "chr2"),
start = c(100, 200, 300, 400),
end = c(150, 250, 350, 450))

x2 <- data.frame(id = 1:4, BLA=LETTERS[1:4],
chromosome = c("chr1", "chr2", "chr2", "chr1"),
start = c(140, 210, 400, 300),
end = c(160, 240, 415, 320))

j <- genome_intersect(x1, x2, by=c("chromosome", "start", "end"), mode="both")
print(j)

genome_subtract Subtract one data frame from another based on chromosome, start and
end.

Description

Subtract one data frame from another based on chromosome, start and end.

Usage

genome_subtract(x, y, by = NULL)

Arguments

x A dataframe.

y A dataframe.

by A character vector with 3 entries which are used to match the chromosome, start
and end column. For example: by=c("Chromosome"="chr", "Start"="start",
"End"="end")

Value

The subtracted dataframe of x and y with the new boundaries.

genome_subtract 7

Examples

library(dplyr)

x1 <- data.frame(id = 1:4, bla=letters[1:4],
chromosome = c("chr1", "chr1", "chr2", "chr1"),
start = c(100, 200, 300, 400),
end = c(150, 250, 350, 450))

x2 <- data.frame(id = 1:4, BLA=LETTERS[1:4],
chromosome = c("chr1", "chr2", "chr1", "chr1"),
start = c(120, 210, 300, 400),
end = c(125, 240, 320, 415))

j <- genome_subtract(x1, x2, by=c("chromosome", "start", "end"))
print(j)

Index

cluster_interval, 2

genome_anti_join_closest
(genome_join_closest), 5

genome_cluster, 2
genome_complement, 3
genome_full_join_closest

(genome_join_closest), 5
genome_inner_join_closest

(genome_join_closest), 5
genome_intersect, 4
genome_join_closest, 5
genome_left_join_closest

(genome_join_closest), 5
genome_right_join_closest

(genome_join_closest), 5
genome_semi_join_closest

(genome_join_closest), 5
genome_subtract, 6

8

	cluster_interval
	genome_cluster
	genome_complement
	genome_intersect
	genome_join_closest
	genome_subtract
	Index

